
193

21. Paul Edwards, The Closed World: Computers and the Politics of Discourse in Cold War

America.

22. Marcel Proust, Remembrance of Things Past. Volume 1: Swann’s Way: Within a Bud-

ding Grove, translated by C. K. Scott Moncrieff and Terence Kilmartin, 50.

Obfuscated Code1

Nick Montfort

Although conventional wisdom holds that computer programs must be ele-
gant and clear in order to be admirable, there are unusual counterexamples
to this principle. In the practice of obfuscated programming, the most pleas-
ing programs are held to be those that are concise but which are also dense
and indecipherable, programs that run in some sort of surprising way.2 Ob-
fuscated code demonstrates that there are other aesthetic principles at play
besides those “classical” ones that have been most prominent in discussions of
programming aesthetics by programmers3 and critics.4

A popular form of programming related to obfuscation was already in evi-
dence by the beginning of the 1980s. This was the practice of writing one- line
BASIC programs, undertaken by people who, for the most part, were not pro-
fessional programmers, but who had started programming during the home
computing boom. These recreational one- liners work in some amusing way,
sometimes even implementing a simple interactive game. The following pro-
gram, for instance, when run on a Commodore 64, displays random mazes:

10 PRINT CHR$(109+RND(1)*2); : GOTO 10

This is accomplished by simply printing one of two graphic characters at ran-
dom, “ \” or “ / ”, and then, without printing a linebreak, jumping back to the
start of the line. The idea of the one- liner is not original to the home com-
puter era and BASIC; in a 1974 talk, Donald Knuth pointed out a precedent
in APL programming and noted he enjoyed writing programs that fi t on a
single punched card.5 But the one- liner became widespread as BASIC gained
popularity, and some one- line BASIC programs (on systems that permit lines
longer than eighty characters) became quite intricate and elaborate. A small
but reasonably complete implementation of Tetris was done in one line of BBC

Obfuscated Code

194

Micro BASIC in 1992,6 and a one- line BASIC spreadsheet program has been
posted on Usenet.7 One- line BASIC programs were often printed in magazines
and keyed in by users. Code compression, rather than obfuscation for its own
sake, was emphasized, but presentations of these programs sometimes asked
the reader to fi gure out what they did, indicating that these programs were
puzzling and challenging to decipher.

This puzzle aspect highlights the two main “readers” for a computer pro-
gram: on the one hand, the human reader who examines the code to under-
stand how it works, and how to debug, improve, or expand it; on the other,
the computer, which executes its statements or evaluates its functions by run-
ning the corresponding machine code on its processor. A program may be clear
enough to a human reader but may have a bug in it that causes it not to run,
or a program may work perfectly well but be hard to understand. Writers of
obfuscated code strive to achieve the latter, crafting programs so that the gap
between human meaning and program semantics gives aesthetic pleasure.

Obfuscated programming is institutionalized today not in microcomputer
magazines but online, where programs are exchanged and contests are hosted.
The International Obfuscated C Code Contest has been held eighteen times
since the fi rst contest ran in 1984, back when one- line BASIC programs were
still in vogue. Only small, complete C programs can be entered in the IOCCC.
The contest’s stated goals include demonstrating the importance of program-
ming style “in an ironic way” and illustrating “some of the subtleties of the C
language.”8 There is also an obfuscated Perl contest, run annually by The Perl
Journal since 1996, but the most visible tradition of Perl obfuscation is seen in
short programs that print “Just another Perl hacker,” which are called JAPHs.
In early 1990, Randal Schwartz began the tradition of writing these programs
by including them in his signature when posting on comp.lang.perl.

Some sorts of obfuscation techniques are common to IOCCC entries and
JAPHs and may be used in just about any programming language. Even as-
sembly language allows the free naming of variables and labeling of particular
instructions, so that these names can be used meaningfully and can help people
better understand programs. Wherever such names can be freely chosen, they
can be selected in a meaningless or even a deceptive way, as when num or
count is used to store something other than a number, or when x and y appear
together in a program to mislead the reader into thinking they are Cartesian
coordinates. Since variable names are usually case- sensitive, there are addi-

Obfuscated Code

195

tional possibilities for confusion. In C, where no special character is used to in-
dicate a variable, programs take advantage of this and of the case- sensitivity of
variable names to name some variables o and O, inviting additional confusion
with the number zero. This play, which can be called naming obfuscation, shows
one very wide range of choices that programmers have. By calling attention to
this, naming obfuscation demonstrates that everything about a programmer’s
task is not automatic, value- neutral, and disconnected from the meanings of
words in the world.

Another obfuscation technique takes advantage of curiosities in syntax to
make it seem that some piece of data—for instance, a string that is being as-
signed to a variable—is actually part of the program’s code. Alternatively, some-
thing that appears to be a comment, and thus to have no effect on the program’s
workings, may actually be part of the code, or vice- versa. This data / code / comment
confusion is invited by fl aws or curiosities in a language’s specifi cation, but can
be accomplished in several different languages, including C and Perl.

There are also obfuscations that appear more prominently in one language
than in another. In C, a[b] and b[a] have the same meaning, which is not the
case when accessing array elements in other languages. An obfuscator working
in C, however, can choose the more confusing of the two. Other languages do
not defi ne the addition of strings and numbers, or they defi ne it in a way that
seems more intuitive, at least to beginning programmers. But C, by giving the
programmer the power to use pointers into memory as numbers and to per-
form arithmetic with them, particularly enables pointer confusion. By showing
how much room there is to program in perplexing ways—and yet accomplish-
ing astounding results at the same time—obfuscated C programs comment on
particular aspects of that language, especially its fl exible and dangerous facili-
ties for pointer arithmetic.

Perl does not invite this sort of obfuscation, but does allow for several others.
There are a dazzling variety of extremely useful special variables in Perl, which
are represented with pairs of punctuation marks; this feature of the language
merits an obfuscation category of its own. Perl’s powerful pattern- matching
abilities also allow for cryptic and deft string manipulations. The name Perl is
sometimes said to stand for “Practical Extraction and Report Language,” but
“Pathologically Eclectic Rubbish Lister” is sometimes mentioned as another
possible expansion. The language is ideal for text processing, which means
that short messages (such as “Just another Perl hacker,”) can be printed out in

Obfuscated Code

196

many interesting ways, sometimes using little- known sorts of pattern- matching
obfuscation.

This JAPH, posted by Randal Schwartz on April 18, 1990, provides a short
example that can be explicated in some depth:

$_=”,rekcah lreP rehtona tsuJ”;s / .$ / eval ‘print $&’,”” / e while

length

Like most such programs, this one prints “Just another Perl hacker,”—the
comma at the end is traditional—and does so in a curious way. There are only
two statements in this one- line program, separated by a semicolon. The fi rst
statement puts a string with the reverse of this message into $_, the Perl spe-
cial variable for the current line. The second command is the interesting one;
it is a substitution operation of the form s / FIND / REPLACE / e which is called
implicitly on $_. The e after the fi nal slash means that the result will be evalu-
ated as a Perl expression. The “while length” at the very end results in this
substitution being repeatedly called, iteratively, as long as there is something
left in $_. Since one character is removed from the string on each pass, the fol-
lowing substitution operation is called once for each character in the string:

s / .$ / eval ‘print $&’,”” / e

The effect of this is to take the last character in the current line—“J” will
therefore be selected fi rst—and prepare a string to contain it. The fi rst such
string that is built is “eval ‘print_,””’”. This string is evaluated as a Perl ex-
pression, which results in “eval” executing its own Perl program to print the
character “J”. Since this mini- program returns no value, the letter selected is
replaced with nothing, and the string is diminished in length.

There would be nothing very interesting about simply reversing a string
and then printing it out, or about starting at the end of a string and printing
it back- to- front one character at a time, although it might be interesting to
see one of these processes coded up in a single, short statement. Here, a single
statement does all of this and more. The statement creates a string that, when
evaluated as an expression, executes a very short program to print a character.
This statement also removes that last character from the current line and then
continues processing the shorter line.

Obfuscated Code

197

A repository of JAPHs is available online9 and explications of several have
been provided.10 An explication of an introductory obfuscated C program11 is
also available.

Recent IOCCC programs include a racing game in the style of Pole Position,
a CGI- enabled web server, and a program to display mazes whose code is itself
in the shape of a maze. Obfuscated code in Perl as well as C often spells out a
name in large letters or assumes the form of some other ASCII art picture. This
is a type of double coding; more generally, multiple coding can be seen in “bilingual”
programs, which are valid computer programs in two different programming
languages. Double coding in natural languages is exemplifi ed by the sentence
“Jean put dire comment on tape,” which is grammatical English and gram-
matical French (“Jean [male name] is able to say how one types”), although each
word has a different meaning in each language. Harry Mathews contributed to
further French / English double coding by assembling the Mathews Corpus, a
list of words which exist in both languages but have different meanings.12 In
programming, an important fi rst step was the 1968 Algol by Noël Arnaud, a
book of poems composed from keywords in the Algol programming language.13
Perl poetry is a prominent modern- day form of double- coding, distinguished
from obfuscated programming as a practice mainly because it is not as impor-
tant in Perl poetry that the program function in an interesting way; the essen-
tial requirement is that the poem be valid Perl.

Interestingly, it is not the case that languages typically despised by hack-
ers—for instance, COBOL and Visual Basic—are the main ones used in ob-
fuscation. Many Perl hackers and C coders who write obfuscated programs
also use those languages professionally and fi nd it enjoyable to code in those
languages. They generally do not fi nd it fun to program in COBOL or Visual
Basic, however, even to comment negatively on these languages. In addition
to making fun of some “misfeatures” or at least abusable features of languages,
obfuscated code shows how powerful, fl exible programming languages allow
for creative coding, not only in terms of the output but in terms of the legibil-
ity and appearance of the source code.

All obfuscations—including naming obfuscations as well as language-
 specifi c ones, such as choosing the least well- known language construct to ac-
complish something—explore the play in programming, the free space that is
available to programmers. If something can only be done one way, it cannot be
obfuscated. It is this play that can be exploited to make the program signify on
different levels in unusual ways.

Obfuscated Code

198

The practice of obfuscated programming, like the kindred practice of de-
veloping weird programming languages, is connected to certain literary and
artistic traditions. The practice suggests that coding can resist clarity and
 elegance to strive instead for complexity, can make the familiar unfamiliar,
and can wrestle with the language in which it is written, just as much con-
temporary literature does. Another heritage is the tradition of overcompli-
cated machinery that has manifested itself in art in several ways. Alfred Jarry’s
 ’Pataphysics, “the science of imaginary solutions,” which involves the design
of complicated physical machinery and also the obfuscation of information and
standards, is one predecessor for obfuscated programming. There are also the
kinetic installations of Peter Fischli and David Weiss and the elaborate appa-
ratus seen in their fi lm The Way Things Go (1987–1988), as well as the earlier
visual art of Robert Storm Petersen, Heath Robinson, and Rube Goldberg.
These depictions and realizations of mechanical ecstasy comment on engineer-
ing practice and physical possibility, much as obfuscated coding and weird
languages comment on programming and computation. Such “art machines”
anticipate obfuscated programs by doing something in a very complex way,
but also by actually doing something and causing a machine to work.

Obfuscated code is intentionally diffi cult to understand, but the practice of
obfuscated programming does not oppose the human understanding of code.
It darkens the usually “clear box” of source code into something that is dif-
fi cult to trace through and puzzle out, but by doing this, it makes code more
enticing, inviting the attention and close reading of programmers. There is
enjoyment in fi guring out what an obfuscated program does that would not
be found in longer, perfectly clear code that does the same thing. While ob-
fuscation shows that clarity in programming is not the only possible virtue, it
also shows, quite strikingly, that programs both cause computers to function
and are texts interpreted by human readers. In this way it throws light on the
nature of all source code, which is human- read and machine- interpreted, and
can remind critics to look for different dimensions of meaning and multiple
codings in all sorts of programs.

Notes

1. Parts of this article are based on a paper entitled “A Box Darkly” that Michael

Mateas and I presented at Digital Arts and Culture 2005.

Obfuscated Code

199

2. There is also a practice of making one’s code diffi cult to understand or reverse-

 engineer for commercial purposes, to keep competitors or clients from understanding

one’s proprietary programs. Despite some similarities in what is done in this case, this

practice seems to have no aesthetic principle behind it and no important relationship

to obfuscated programming as described here.

3. For example, Donald E. Knuth, “Computer Programming as an Art,” in Literate

Programming, 1–16.

4. For example, Maurice J. Black, “The Art of Code,” Ph.D. Dissertation, University

of Pennsylvania (2002).

5. Knuth, “Computer Programming as an Art.”

6. David Moore, “Rheolism: One Line Tetromino Game,” available at http: // www

.survex.com / ~olly / dsm_rheolism / (accessed July 1, 2001).

7. Mark Owen, “BASIC Spreadsheet.” Quoted in C. D. Wright, “One Line Spreadsheet

in BASIC,” post to comp.lang.functional. Message- ID: <D01s7J.LK3@cix.compulink

.co.uk> (November 29, 1994).

8. Landon Curt Noll, Simon Cooper, Peter Seebach, and Leonid A. Broukhis. “The Inter-

national Obfuscated C Code Contest,” available at http: // www.ioccc.org / main.html / .

9. JAPHs, available at http: // www.cpan.org / misc / japh / .

10. See Teodor Zlatanov, “Cultured Perl: The Elegance of JAPH”; Abigail, “JAPHs

and Other Obscure Signatures”; and, Mark- Jason Dominus, “Explanation of japh.pl”

11. Michael Mateas and Nick Montfort, “A Box Darkly: Obfuscation, Weird Lan-

guages and Code Aesthetics.”

12. Harry Mathews and Alistair Brotchie, Oulipo Compendium.

13. Ibid.

Obfuscated Code

